[Increasing activity of Rhizopus chinensis CCTCC M201021 lipase by directed evolution-error prone PCR].
نویسندگان
چکیده
Directed evolution strategy (error-prone PCR) was conducted to improve the activity of lipase from Rhizopus chinensis CCTCC M201021. Through two rounds of ep-PCR and pNPP top agar screening, two optimum mutant strains 1-11 and 2-28 were obtained with 2 and 4 fold of enzyme activity higher than that of parent strain, respectively. DNA sequencing of mutant lipase 2-28 revealed four amino acid substitutions: A129S, K161R, A230T, K322R. According to the simulated protein structure of Rhizopus chinensis lipase, A129S, K161R, A230T were located on the surface of the protein. A230T substitution improved the stability of the alpha-helix loop. K322R, near the catalytic center of lipase, located at a loop, formed a salt-bridge with a nearby aspartic acid (negative charged). Electrostatic force pulled the loop to the opposite direction of the substrate channel and made it easier for substrate to enter the lipase catalytic domain. Purified lipase was characterized and the result showed that Km of 2-28 lipase decreased by 10% compared with Km of the parent lipase, and Kcat was 2.75 fold improved than that of the original lipase.
منابع مشابه
Enhanced thermostability of a Rhizopus chinensis lipase by in vivo recombination in Pichia pastoris
BACKGROUND Lipase from Rhizopus chinensis is a versatile biocatalyst for various bioconversions and has been expressed at high-level in Pichia pastoris. However, the use of R. chinensis lipase in industrial applications is restricted by its low thermostability. Directed evolution has been proven to be a powerful and efficient protein engineering tool for improvement of biocatalysts. The present...
متن کاملEnhanced reactivity of Rhizopus oryzae lipase displayed on yeast cell surfaces in organic solvents: potential as a whole-cell biocatalyst in organic solvents.
Immobilization of enzymes on some solid supports has been used to stabilize enzymes in organic solvents. In this study, we evaluated applications of genetically immobilized Rhizopus oryzae lipase displayed on the cell surface of Saccharomyces cerevisiae in organic solvents and measured the catalytic activity of the displayed enzyme as a fusion protein with alpha-agglutinin. Compared to the acti...
متن کاملRole of N-linked glycosylation in the secretion and enzymatic properties of Rhizopus chinensis lipase expressed in Pichia pastoris
BACKGROUND The methylotrophic yeast, Pichia pastoris, is widely used as a useful experimental tool in protein engineering and production. It is common for proteins expressed in P. pastoris to exhibit N-glycosylation. In recent years, glycosylation studies in P. pastoris have attracted increasing attention from scholars. Rhizopus chinensis lipase (RCL) is one of the most important industrial lip...
متن کاملImproving tolerance of Candida antarctica lipase B towards irreversible thermal inactivation through directed evolution.
To expand the functionality of lipase B from Candida antarctica (CALB) we have used directed evolution to create CALB mutants with improved resistance towards irreversible thermal inactivation. Two mutants, 23G5 and 195F1, were generated with over a 20-fold increase in half-life at 70 degrees C compared with the wild-type CALB (WT-CALB). The increase in half-life was attributed to a lower prope...
متن کاملEnhancement of the efficiency of secretion of heterologous lipase in Escherichia coli by directed evolution of the ABC transporter system.
The ABC transporter (TliDEF) from Pseudomonas fluorescens SIK W1, which mediated the secretion of a thermostable lipase (TliA) into the extracellular space in Escherichia coli, was engineered using directed evolution (error-prone PCR) to improve its secretion efficiency. TliD mutants with increased secretion efficiency were identified by coexpressing the mutated tliD library with the wild-type ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Sheng wu gong cheng xue bao = Chinese journal of biotechnology
دوره 25 12 شماره
صفحات -
تاریخ انتشار 2009